Modal affinities of endplate acetylcholine receptors caused by loop C mutations
نویسندگان
چکیده
منابع مشابه
Modal affinities of endplate acetylcholine receptors caused by loop C mutations
The time course of the endplate current is determined by the rate and equilibrium constants for acetylcholine receptor (AChR) activation. We measured these constants in single-channel currents from AChRs with mutations at the neurotransmitter-binding sites, in loop C. The main findings are: (a) Almost all perturbations of loop C generate heterogeneity in the channel open probability ("modes"). ...
متن کاملModal gating of endplate acetylcholine receptors: A proposed mechanism
435 C o m m e n t a r y Decades ago as a beginning graduate student, one of us (K.L.M.) was studying short-term synaptic plasticity at the neuromuscular synapse. The responses were generally consistent from day to day, but there was some variability. At that time, K.L.M. naively thought that if it were possible to directly study the macromolecular building blocks underlying neuromuscular transm...
متن کاملLong release latencies are increased by acetylcholine at frog endplate.
Uni-quantal endplate currents (EPCs) were recorded extracellularly at the frog neuromuscular synapse and their latency dispersions expressed as P(90) were estimated in the presence of acetylcholine. Stimulation-evoked EPCs with long release latencies increased in number when acetylcholine was applied. P90, which is designated as the interval between the minimal synaptic delay and the time at wh...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملRapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome.
Congenital myasthenic syndromes (CMSs) stem from genetic defects in endplate (EP)-specific presynaptic, synaptic, and postsynaptic proteins. The postsynaptic CMSs identified to date stem from a deficiency or kinetic abnormality of the acetylcholine receptor (AChR). All CMSs with a kinetic abnormality of AChR, as well as many CMSs with a deficiency of AChR, have been traced to mutations in AChR-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of General Physiology
سال: 2015
ISSN: 1540-7748,0022-1295
DOI: 10.1085/jgp.201511503